skip to main content


Search for: All records

Creators/Authors contains: "Zheng, Ying"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available August 15, 2024
  2. Beier, David R. (Ed.)
    Enhancers are context-specific regulators of expression that drive biological complexity and variation through the redeployment of conserved genes. An example of this is the enhancer-mediated control of Engrailed 1(EN1), a pleiotropic gene whose expression is required for the formation of mammalian eccrine sweat glands. We previously identified the En1 candidate enhancer (ECE) 18 cis-regulatory element that has been highly and repeatedly derived on the human lineage to potentiate ectodermal EN1 and induce our species’ uniquely high eccrine gland density. Intriguingly, ECE18 quantitative activity is negligible outside of primates and ECE18 is not required for En1 regulation and eccrine gland formation in mice, raising the possibility that distinct enhancers have evolved to modulate the same trait. Here we report the identification of the ECE20 enhancer and show it has conserved functionality in mouse and human developing skin ectoderm. Unlike ECE18, knock-out of ECE20 in mice reduces ectodermal En1 and eccrine gland number. Notably, we find ECE20, but not ECE18, is also required for En1 expression in the embryonic mouse brain, demonstrating that ECE20 is a pleiotropic En1 enhancer. Finally, that ECE18 deletion does not potentiate the eccrine phenotype of ECE20 knock-out mice supports the secondary incorporation of ECE18 into the regulation of this trait in primates. Our findings reveal that the mammalian En1 regulatory machinery diversified to incorporate both shared and lineage-restricted enhancers to regulate the same phenotype, and also have implications for understanding the forces that shape the robustness and evolvability of developmental traits. 
    more » « less
  3. An experiment was performed to investigate a modified pooling method for use in convolutional neural networks for image recognition. This algorithm–Variable Stride–allows the user to segment an image and change the amount of subsampling in each region. This control allows for the user to maintain a higher amount of data retention in more important regions of the image, while more aggressively subsampling the less important regions to increase training speed. Three Variable Stride methods were compared to the preexisting pooling algorithms, Maximum Pool and Average Pool, in three different network configurations tasked with classifying Diabetic Retinopathy images between its early and advanced stages. Each combination was run multiple times and the AUC, Validation Loss, Validation Accuracy, and number of training epochs until convergence of each run was all collected. Maximum Pool and Average Pool were both found to be superior to Variable Stride when deployed in these scenarios. 
    more » « less
  4. Abstract

    Although long-read single-cell RNA isoform sequencing (scISO-Seq) can reveal alternative RNA splicing in individual cells, it suffers from a low read throughput. Here, we introduce HIT-scISOseq, a method that removes most artifact cDNAs and concatenates multiple cDNAs for PacBio circular consensus sequencing (CCS) to achieve high-throughput and high-accuracy single-cell RNA isoform sequencing. HIT-scISOseq can yield >10 million high-accuracy long-reads in a single PacBio Sequel II SMRT Cell 8M. We also report the development of scISA-Tools that demultiplex HIT-scISOseq concatenated reads into single-cell cDNA reads with >99.99% accuracy and specificity. We apply HIT-scISOseq to characterize the transcriptomes of 3375 corneal limbus cells and reveal cell-type-specific isoform expression in them. HIT-scISOseq is a high-throughput, high-accuracy, technically accessible method and it can accelerate the burgeoning field of long-read single-cell transcriptomics.

     
    more » « less
  5. Abstract

    Janus kinase (JAK) inhibitors are approved for many dermatologic disorders, but their use is limited by systemic toxicities including serious cardiovascular events and malignancy. To overcome these limitations, injectable hydrogels are engineered for the local and sustained delivery of baricitinib, a representative JAK inhibitor. Hydrogels are formed via disulfide crosslinking of thiolated hyaluronic acid macromers. Dynamic thioimidate bonds are introduced between the thiolated hyaluronic acid and nitrile‐containing baricitinib for drug tethering, which is confirmed with1H and13C nuclear magnetic resonance (NMR). Release of baricitinib is tunable over six weeks in vitro and active in inhibiting JAK signaling in a cell line containing a luciferase reporter reflecting interferon signaling. For in vivo activity, baricitinib hydrogels or controls are injected intradermally into an imiquimod‐induced mouse model of psoriasis. Imiquimod increases epidermal thickness in mice, which is unaffected when treated with baricitinib or hydrogel alone. Treatment with baricitinib hydrogels suppresses the increased epidermal thickness in mice treated with imiquimod, suggesting that the sustained and local release of baricitinib is important for a therapeutic outcome. This study is the first to utilize a thioimidate chemistry to deliver JAK inhibitors to the skin through injectable hydrogels, which has translational potential for treating inflammatory disorders.

     
    more » « less
  6. Abstract

    Collagen organization plays an important role in maintaining structural integrity and determining tissue function. Polarization-sensitive optical coherence tomography (PSOCT) is a promising noninvasive three-dimensional imaging tool for mapping collagen organization in vivo. While PSOCT systems with multiple polarization inputs have demonstrated the ability to visualize depth-resolved collagen organization, systems, which use a single input polarization state have not yet demonstrated sufficient reconstruction quality. Herein we describe a PSOCT based polarization state transmission model that reveals the depth-dependent polarization state evolution of light backscattered within a birefringent sample. Based on this model, we propose a polarization state tracing method that relies on a discrete differential geometric analysis of the evolution of the polarization state in depth along the Poincare sphere for depth-resolved birefringent imaging using only one single input polarization state. We demonstrate the ability of this method to visualize depth-resolved myocardial architecture in both healthy and infarcted rodent hearts (ex vivo) and collagen structures responsible for skin tension lines at various anatomical locations on the face of a healthy human volunteer (in vivo).

     
    more » « less
  7. null (Ed.)
    Stereoregularity significantly influences the crystallization, mechanical, and thermal properties of polymers. In this work, we investigate crystallization behaviors and molecular dynamics of atactic (a)-, isotactic (i)-, and syndiotactic (s)-hydrogenated poly(norbornene) (hPNB)s by using small-angle X-ray scattering and solid-state (ss) NMR. a-hPNB exhibits a much higher crystallinity (Φc) (82%) and long period (L) (80 nm) than i- and s-hPNB (50–55% and 17–21 nm). Moreover, in the s-hPNB crystalline region, chain dynamics is not thermally activated up to the melting temperature (Tm), while in the crystalline regions of i- and a-hPNB, small amplitude motions occur in a slow dynamic regime of 10–2–102 s. The molecular dynamics follows Arrhenius behavior in a-hPNB up to the crystal–crystal transition temperature (Tcc), while these dynamics are surprisingly saturated in i-hPNB under these conditions. Temperature dependence of the molecular dynamics leads to different crystal–crystal transitions between i- and a-hPNBs: i-hPNB changes the trans conformation to the gauche one due to the localized bond rotations where chain dynamics is restricted, whereas a-hPNB keeps a nearly trans conformation and conducts fast chain dynamics due to the amplified C–C bond rotations in the high-temperature phase. Such fast chain dynamics leads to unique crystallization behaviors of hPNB, specifically in the atactic configuration due to configurational disorder coupled with conformational flexibility. 
    more » « less
  8. null (Ed.)